D174181, D174183, D174185

DPBARCODE (RECORD)

081901

SHAUGHNESSY NO

REVIEW NO.

_	÷	_	_			
п,	М,	В	- 10	ы \.	<i>i</i>	H'W
نند	1	יי	-1	۷ نا	_	EW

DATE	IN: 02-10-92	OUT:_	<u> </u>

CASE #: 030292, 048311, 048333 SUBMISSION # : S410905, S410908, S410909 ID #: 050534-00008, 050534-00157, 050534-00188 DATE RECEIVED BY EFED ________02-07-92 SRRD/RD REQUESTED COMPLETION DATE _______06-05-92 EEB ESTIMATED COMPLETION DATE 06-05-92 SRRD/RD ACTION CODE/TYPE OF REVIEW 330 - New Use Amend. MRID #(S) _____ DP TYPE 001 - Submission Related Data Package PRODUCT MANAGER, NO. <u>C. Giles-Parker (22)</u> PRODUCT NAME(S) Bravo 500, Bravo 90 DG, Bravo 720 TYPE PRODUCT F R I N H D Fungicide COMPANY NAME _____ ISK Biotech Corp. SUBMISSION PURPOSE <u>Review proposed use on passion fruit</u> INCLUDE USE(S)

COMMON CHEMICAL NAME _____ Chlorothalonil

DP BARCODE: D174185

DATA PACKAGE RECORD DATE: 02/06/92 CASE: 048333

SUBMISSION: S410909 BEAN SHEET Page 1 of 1

* * * CASE/SUBMISSION INFORMATION * * *

CASE TYPE: REGISTRATION ACTION: 330 TECH-NEW F/F USE AMND

CHEMICALS: 081901 Chlorothalonil (tetrachloroisophthalonitrile) 54.0000%

ID#: 050534-00188 BRAVO 720 COMPANY: 050534 ISK BIOTECH CORP

PRODUCT MANAGER: 22 CYNTHIA GILES-PARKER 703-305-5540 ROOM: CM2 227

703-305-7391 ROOM: CM2 PM TEAM REVIEWER: JAMES STONE 247

RECEIVED DATE: 01/21/92 DUE OUT DATE: 07/29/92

1110

* * * DATA PACKAGE INFORMATION * * *

DP BARCODE: 174185 EXPEDITE: N DATE SENT: 02/06/92 DATE RET.:

CHEMICAL: 081901 Chlorothalonil (tetrachloroisophthalonitrile)

DP TYPE: 001 Submission Related Data Package

ADMIN DUE DATE: 06/05/92 CSF: N LABEL: Y

DATE IN DATE OUT ASSIGNED TO DIV : EFED 02/07/92 / / BRAN: EEB 02/10/92 SECT: / / REVR: CONTR:

* * * DATA REVIEW INSTRUCTIONS * * *

Are there non-target organism concerns from the proposed use on Passion Fruit?

* * * ADDITIONAL DATA PACKAGES FOR THIS SUBMISSION * * *

DP BC BRANCH/SECTION DATE OUT DUE BACK INS CSF LABEL Y N Y 173996 TSCB 02/04/92 06/03/92

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT: Chlorothalonil- Registration on Passion Fruit

DP Barcodes: 174181, 174183, and 174185

ID Nos: 050534-00008, -00157, and $\sqrt{00188}$

FROM: Douglas J. Urban, Acting Chief

Ecological Effects Branch

Environmental Fate and Effects Division (A7507C)

TO: Cynthia Giles-Parker, PM 22

Fungicide\Herbicide Branch Registration Division (H7505C)

ICI Americas, Inc. is requesting the registration of chlorothalonil (Bravo 500, 720, and 90DG) on passion fruit. This pesticide was approved for use on passion fruit in Hawaii only (in June 1978). EEB has no record of a prior risk analysis for this use. The current proposed registration removes the restriction on locale.

EEB has reviewed the proposed registration and has concluded that both acute and chronic effects to aquatic organisms may occur. According to ISK Biotech, the majority of passion fruit production is in Florida, with limited production in some other states and Puerto Rico. Yet, the available laboratory data indicates that chlorothalonil is very highly toxic to aquatic organisms.

There is also the possibility of chronic reproductive hazard to avian life. Chlorothalonil apparently does not photodegrade and chronic exposure to avian life is expected. An explanation as to the significance of the discoloration observed in the avian reproduction studies is necessary to alleviate this concern.

Endangered species concerns also arise. Endangered birds may be affected on a chronic basis. Aquatic endangered species are expected to be at risk both on an acute and a chronic basis.

If you have any questions, please contact Heather Mansfield (305-5064).

MEMORANDUM

SUBJECT: Chlorothalonil- Registration on Passion Fruit

DP Barcodes: 174181, 174183, and 174185 ID Nos: 050534-00008, -00157, and -00188

FROM:

Douglas J. Urban, Acting Chief

Ecological Effects Branch

Environmental Fate and Effects Division (H7507C)

TO:

Cynthia Giles-Parker, PM 22 Fungicide\Herbicide Branch Registration Division (H7505C)

ICI Americas, Inc. is requesting the registration of chlorothalonil (Bravo 500, 720, and 90DG) on passion fruit. This pesticide was approved for use on passion fruit in Hawaii only (in June 1978). EEB has no record of a prior risk analysis for this use. The current proposed registration removes the restriction on locale.

EEB has reviewed the proposed registration and has concluded that both acute and chronic effects to aquatic organisms may occur. According to ISK Biotech, the majority of passion fruit production is in Florida, with limited production in some other states and Puerto Rico. Yet, the available laboratory data indicates that chlorothalonil is very highly toxic to aquatic organisms.

There is also the possibility of chronic reproductive hazard to avian life. Chlorothalonil apparently does not photodegrade and chronic exposure to avian life is expected. An explanation as to the significance of the discoloration observed in the avian reproduction studies is necessary to alleviate this concern.

Endangered species concerns also arise. Endangered birds may be affected on a chronic basis. Aquatic endangered species are expected to be at risk both on an acute and a chronic basis.

_	If you	have	any c	questions,	please	contact	Heather	Mansfield	(305-
	5064).				CONCURR	ENCES			
SYMBOL	H75071	H7	-507c	A-7507	4	~~~			
SURNAME	77 M	Lul Va	uzhan	- 497 lilis	J				
DATE	6/22	52 16	.27.92	10/28/9.	<u>্</u> য				4
FPA For	m 1320-1A (1/9	0)		777	Printed on Red	weled Paper		0.	FFICIAL FILE COPY

DP BARCODE: D174181

CASE: 030292

DATA PACKAGE RECORD

SUBMISSION: S410905 BEAN SHEET

DATE: 02/06/92 Page 1 of 1

* * * CASE/SUBMISSION INFORMATION * * *

CASE TYPE: REGISTRATION ACTION: 330 TECH-NEW F/F USE AMND

CHEMICALS: 081901 Chlorothalonil (tetrachloroisophthalonitrile) 40.4000%

ID#: 050534-00008 BRAVO 500 COMPANY: 050534 ISK BIOTECH CORP

PRODUCT MANAGER: 22 CYNTHIA GILES-PARKER 703-305-5540 ROOM: CM2 227

PM TEAM REVIEWER: JAMES STONE 703-305-7391 ROOM: CM2 247

RECEIVED DATE: 01/21/92 DUE OUT DATE: 07/29/92

* * * DATA PACKAGE INFORMATION * * *

DP BARCODE: 174181 EXPEDITE: N DATE SENT: 02/06/92 DATE RET.: / /

CHEMICAL: 081901 Chlorothalonil (tetrachloroisophthalonitrile)

DP TYPE: 001 Submission Related Data Package

ADMIN DUE DATE: 06/05/92 CSF: N LABEL: Y

ASSIGNED TO DATE IN DATE OUT
DIV : EFED 07/07/97 //
BRAN: EEB 02/00/92 //
SECT: // //
REVR : // //
CONTR: // //

* * * DATA REVIEW INSTRUCTIONS * * *

Are there non target organism concerns for proposed use on Passion Fruit.

* * * ADDITIONAL DATA PACKAGES FOR THIS SUBMISSION * * *

DP BC BRANCH/SECTION DATE OUT DUE BACK INS CSF LABEL 173993 TSCB 02/04/92 06/03/92 Y Y N Υ 174182 EFGB 02/06/92 06/05/92 Y N

DP BARCODE: D174183

CASE: 048311

DATA PACKAGE RECORD

SUBMISSION: S410908

BEAN SHEET

DATE: 02/06/92 Page 1 of 1

* * * CASE/SUBMISSION INFORMATION * * *

ACTION: 330 TECH-NEW F/F USE AMND CASE TYPE: REGISTRATION

CHEMICALS: 081901 Chlorothalonil (tetrachloroisophthalonitrile) 90.0000%

ID#: 050534-00157 BRAVO 90 DG

COMPANY: 050534 ISK BIOTECH CORP

PRODUCT MANAGER: 22 CYNTHIA GILES-PARKER

703-305-5540 ROOM: CM2 227

703-305-7391 ROOM: CM2 247

PM TEAM REVIEWER: JAMES STONE DUE OUT DATE: 07/29/92 RECEIVED DATE: 01/21/92

* * * DATA PACKAGE INFORMATION * * *

EXPEDITE: N DATE SENT: 02/06/92 DATE RET.: / / DP BARCODE: 174183 CHEMICAL: 081901 Chlorothalonil (tetrachloroisophthalonitrile)

DP TYPE: 001 Submission Related Data Package

ADMIN DUE DATE: 06/05/92

CSF: N

LABEL: Y

DATE OUT DATE IN ASSIGNED TO 02107192 DIV : EFED 02/10/92 BRAN: EEB / / / SECT: REVR:

CONTR:

* * * DATA REVIEW INSTRUCTIONS * * *

Are there non-target organism concerns from the proposed use on Passion Fruit?

* * * ADDITIONAL DATA PACKAGES FOR THIS SUBMISSION * * *

DP BC	BRANCH/SECTION	DATE OUT	DUE BACK	INS	CSF	LABEL
173994	TSCB		06/03/92	Y	N	Y
	EFGB	02/06/92	06/05/92	Y	N	Y

Ecological Effects Branch Review

CHLOROTHALONIL (BRAVO 500, BRAVO 90 DG, BRAVO 720)

100.0 <u>Submission Purpose and Label Information</u>

100.1 <u>Submission Purpose and Pesticide Use</u>

ICI Americas, Inc., is requesting the registration of chlorothalonil (tetrachloroisophthalonitrile) on passion fruit. This pesticide was approved for use on passion fruit in Hawaii only (in June 1978). The current proposed registration removes the restriction of locale. EEB has no record of any risk analysis being performed for this use.

100.2 Formulation Information

ACTIVE INGREDIENT: chlorothalonil, formulated into three products:

100.3 Application Methods, Direction, Rates

Bravo 500 would be applied at a rate of 2 3/4 pts/acre, or 1.43 lbs a.i. (Calculation-- 4.17 lbs a.i./gallon)

Bravo 720 would be applied at a rate of 2 pts/acre, or 1.5 lbs a.i. (Calculation-6.0 lbs a.i./gallon)

Bravo 90 DG would be applied at a rate of 1 1/2 lbs/acre, or 1.35 lbs a.i.

With all three formulations, ground equipment will be used. Applications are to begin in late bloom an should be repeated at 14 day intervals until weather conditions no longer favor disease development. These formulations should not be applied within 7 days of harvest.

100.4 <u>Target Organisms</u>

Alternaria fruit and leaf spot

Anthracnose

100.5 Precautionary Labeling

ENVIRONMENTAL HAZARDS: This pesticide is toxic to fish, aquatic invertebrates, and marine/estuarine organisms. Runoff from treated areas may be hazardous to aquatic organisms in neighboring areas. Do not apply when weather conditions favor drift from treated area.

- 101.0 Hazard Assessment
- 101.1 <u>Discussion</u>
- 101.2 <u>Likelihood of Adverse Effects to Nontarget Organisms</u>

Terrestrial

Avian Toxicity

The available data indicate chlorothalonil is practically nontoxic to waterfowl on an acute oral basis (mallard $LD_{50} > 4640$ mg/kg). The degradate, DS-3701 is considered to be moderately toxic ($LD_{50} = 158$ mg/kg).

Chlorothalonil may be characterized as practically nontoxic to upland game birds and waterfowl on a subacute dietary basis (bobwhite and mallard $LC_{50} > 10,000$ ppm).

Both a mallard and a bobwhite reproduction study were conducted on chlorothalonil. The bobwhite study produced a NOEL of < 1000, but > 50 ppm as discoloration was noted in all test levels. At nominal dietary concentrations of 5,000 and 10,000 ppm, there were overt signs of toxicity and marked reproductive effects. The mallard study produced a NOEL of 1000 ppm, with discoloration of the skin on the head and body noted at 5000 and 10000 ppm. Reproduction studies performed with the degradate produced NOELs of 50 ppm and 100 ppm for mallards and bobwhite, respectively. In the mallard study, there was a reduction in egg shell thickness at 100 ppm and body weight, food consumption, gonad development, number of eggs laid, embryonic development, egg shell thickness, hatchability, and hatchling survival at 250 ppm. In the bobwhite study, fewer eggs were laid by the 250 ppm group.

Mammalian Toxicity

Chlorothalonil is practically nontoxic to mammals on an acute oral basis ($LD_{50}=10,000~mg/kg$ for rats and 5,000 mg/kg for dogs). A rat reproduction study produced a NOEL of 15,000 ppm.

An acute oral dog study with DS-3701 produced an LD₅₀ of 100 mg/kg.

Aquatic

Freshwater Organisms

Chlorothalonil is very highly toxic to both warmwater and coldwater fish on an acute basis ($LC_{50} = 23 \mu g/L$ for fathead minnow, 43 $\mu g/L$ for catfish, and 47 $\mu g/L$ for rainbow trout). The degradate can be characterized as slightly toxic to fish ($LC_{50} = 16 \text{ ppm}$ for bluegill sunfish).

A fathead minnow life cycle study produced a NOEL of 3 ppb and a

LOEL of 6.5 ppb.

This chemical is very highly toxic on an acute basis to freshwater invertebrates as well, with a Daphnia magna $LC_{50} = 70$ $\mu g/L$. DS-3701 is slightly toxic to invertebrates, with a Daphnia magna $LC_{50} = 26$ ppm.

A Daphnia magna life cycle study produced a NOEL of 39 ppb and a LOEL of 79 ppb.

Marine/Estuarine Organisms

The available data indicate that chlorothalonil is very highly toxic to the estuarine/marine life ($LC_{50} = 32$ ppb for sheepshead minnow, 3.6 ppb for oysters, and 165 ppb for shrimp).

Environmental Fate Data

The following environmental fate data was excerpted from an earlier EEB review (D. Rieder 8/13/91):

Chlorothalonil degrades at a moderate rate in most soils, with a half-life of less than 30 days. Lack of moisture tends to slow down the degradation process. Rate of breakdown increases as the temperature rises from 21°C to 39°C. Aged chlorothalonil is slightly mobile to mobile in most soils.

DS-3701, the major degradate of chlorothalonil, is extremely persistent with no dissipation observed within 90 days. The degradate also leaches in many types of soil.

Chlorothalonil is stable to hydrolysis for 30 days at pH 5 and 7. At pH 9, 10% will degrade to 2,4,5,6-tetrachloroisophthalamide in 30 days. The half-life in flooded sandy loam (sediment) was 5-15 days.

Water solubility is 6 ppm.

DS-3701 is stable to hydrolysis.

Both chlorothalonil and DS-3701 are stable to photodegradation on surfaces.

Based on information from crop residue studies, the value of 7.5% will be used to estimate exposure levels of the degradate.

The bioconcentration of chlorothalonil in bluegill sunfish plateaus at 60 to 200x in edible tissue and 900 to 3000x in nonedible tissues. DS-3701 bioconcentration in bluegill plateaus at 50x in edible tissue and 250x in nonedible tissues. Residues of both parent and degradate declined to less than 50% after 7 to 10 days in clean water.

RESIDUES AND RISK ASSESSMENT

Effects on Terrestrial Organisms

A. Avian

Using the Kenaga nomograph, the following terrestrial residues are expected based on a single application of 1.5 lbs a.i./acre (maximum rate):

SHORT RANGE GRASS	LONG RANGE GRASS	LEAVES	FORAGE	PODS, SEEDS, & INSECTS	FRUIT
360 ppm	165 ppm	188 ppm	87 ppm	18 ppm	11 ppm

As the degradate is estimated to be 7.5% of the parent compound, the following residues of DS-3701 are expected from a single maximum application:

SHORT RANGE GRASS	LONG RANGE GRASS	LEAVES	FORAGE	PODS, SEEDS, & INSECTS	FRUIT
27 ppm	12 ppm	14 ppm	7 ppm	1 ppm	.8 ppm

According to the above tables, the expected residues on terrestrial food items of the parent or the degradate should not pose a hazard to nontarget species on an acute basis. However, chlorothalonil is persistent in the environment and the expected terrestrial residues do surpass the bobwhite NOEL.

In addition, applications of chlorothalonil can be repeated every 14 days. To account for multiple applications, the EPA Fate computer program was employed. The calculated EECs surpassed the reproductive NOELS for both bobwhites and mallards. The expected residue on short grass also surpassed the mallard NOEL for the degradate (attachment B).

B. Mammalian

Chlorothalonil is practically nontoxic to mammals on an acute oral basis (rat $LD_{50}=10000~mg/kg$). A rat reproduction study produced a NOEL of 15,000 ppm.

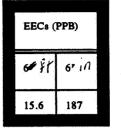
The exposure is expected to be well below the NOEL of 15,000 ppm

reported for the rat 90-day-chronic feeding study. Therefore, the parent compound does not raise concern for mammalian species.

Effects on Aquatic Organisms

A single application of chlorothalonil with a mist blower will produce both drift and runoff that may enter the aquatic environment. The following parameters were used in calculating the aquatic estimated environmental concentration (EEC) of a one acre pond that is 6' or 6" deep:

maximum application rate = 1.5 lbs
% runoff = 2% (water solubility = 6 ppm)
size of treated area = 10 acre drainage basin
conversion factor


- 1 acre pond, 6' deep = 61 ppb
- 1 acre pond, 6" deep = 734 ppb
- 1.5lbs(runoff) x0.6 (appl.effic.) x0.02 (runoff) x10 (acredrainagebas
 - $1.51bs \times 0.05$ (%drift) = .0751bs (totaldrift)

Totalloading=.181b+.0751b=.2551b

6/pond= 61ppbx.255lb=15.6ppb 6/pond= 734ppbx.255lb=187ppb

EECs for both the 6' and 6" pond surpass the restricted use hazard triggers for freshwater fish and invertebrates (fathead minnow, catfish, rainbow trout, and Daphnia magna) and estuarine/marine life (sheepshead minnow, oyster, and shrimp). With a half-life of approximately 30 days, a single application of chlorothalonil also raises concerns of chronic toxicity. Both EECs surpass the NOEL and LOEL for fathead minnows. The EEC for a 6" pond, indicative of wetlands, surpasses the NOEL and LOEL for Daphnia magna. Not only are all aquatic restricted use and chronic triggers surpassed, but the use of chlorothalonil on passion fruit is also a high risk concern as EECs exceed \$\frac{1}{2}\$ of the LC50 (see table on following page).

SPECIES	ACUTE TRIGG		HAZAR	CHRONIC HAZARD TRIGGERS (PPB)		
	1/2 LC ₅₀	1/10 LC ₅₀	1/20 LC ₅₀	NOEL	LOEL	
Fathead minnow	11.5	2.3	1.2	3	6.5	
Catfish	21.5	4.3	2.2			
Rainbow trout	23.5	4.7	2.4	,		
Daphnia magna	35	7	3.5	39	79	
Sheepshead minnow	16	3.2	1.6			
Oyster	1.8	.36	.18			
Shrimp	82.5	16.5	8.3			

In summary, both acute and chronic concerns arise for freshwater and estuarine/marine organisms from a single use of chlorothalonil at the maximum rate on passion fruit. Environmental concerns are compounded by the multiple applications that may be repeated at 14 day intervals.

Endangered Species Consideration.

The available data indicate that use of chlorothalonil on passion fruit will pose a hazard to avian life on a chronic basis. Hazard to both freshwater and marine/estuarine endangered nontarget organisms is expected, both on an acute and chronic basis.

101.4 Adequacy of Toxicity Data

No additional data was submitted to support this use pattern.

The following information is necessary to adequately assess the hazard from chlorothalonil's use on passion fruit:

- an explanation of the significance of the discoloration observed in the avian reproduction studies
- aquatic field testing

The above items have been requested by prior EEB reviews.

101.5 Adequacy of Labeling

The following labeling would be required at the time of registration:

A. Outdoor Uses

The following hazard statement should appear on the label:

This pesticide is very highly toxic to fish, aquatic invertebrates, and marine/estuarine organisms. Do not apply directly to water, or to areas where surface water is present or to intertidal areas below the mean high-water mark. Drift and runoff may be hazardous to aquatic organisms in neighboring areas. Do not contaminate water when disposing of equipment washwater rinsate.

Notify State and/or Federal authorities and ISK Biotech Corporation immediately if you observe any adverse environmental effects due to the use of this product.

B. Manufacturing Use

This pesticide is very highly toxic to fish, aquatic invertebrates, and marine/estuarine organisms. Do not discharge effluent containing this product into lakes, streams, ponds, estuaries, oceans, or public water unless this product is specifically identified and addressed in an NPDES permit. Do not discharge effluent containing this product to sewer systems without previously notifying the sewage treatment plant authority. For guidance contact your State Water Board or Regional Office of the EPA.

102.0 Classification

The Restricted Use Criteria for aquatic organisms has been exceeded. Therefore, this pesticide is required to be classified as a "Restricted Use Pesticide."

103.0 Conclusions

The proposed registration of chlorothalonil is for use as fungicide on passion fruit. According to ISK Biotech, the majority of passion fruit production is in Florida, with limited production in some other states and Puerto Rico. Yet, the available laboratory data indicates that chlorothalonil is very highly toxic to aquatic organisms. Both acute and chronic effects to aquatic organisms are expected.

EEB is concerned about this proposed registration as every aquatic EEC calculated exceeds various restricted triggers. Chlorothalonil must be classified as a restricted use pesticide.

Endangered species concerns also arise. Aquatic endangered species are expected to be at risk both on an acute and a chronic basis. Endangered birds may also be affected on a chronic basis.

There is also the possibility of chronic reproductive hazard to avian life. Chlorothalonil apparently does not photodegrade and chronic exposure to avian life is expected. An explanation as to the significance of the discoloration observed in the avian reproduction studies is necessary to alleviate this concern.

Heather Mansfield, Zoologist, Section 2

Ecological Effects Branch

Environmental Fate and Effects Division (H7507C)

Allen Vaughan, Acting Head, Section 2

Ecological Effects Branch

Environmental Fate and Effects Division (H7507C)

Douglas J. Urban, Acting Chief

Ecological Effects Branch

Environmental Fate and Effects Division (H7507C)

EEC CALCULATION SHEET

I. For un-incorporated ground application

A. Runoff

EEC of 1 lb a.i. direct application to 1 A. pond 6-foot deep = 61 ppb

Therefore, EEC = 61 ppb x ____(lb) = ____ ppb

II. For incorporated ground application

A. Runoff

Therefore, EEC = 61 ppb x ____(lbs) = ____ppb

III. For aerial application (or mist blower)

A. Runoff

1.5 lb(s) x 0.6 x 0.02 x 10 (A) = $\frac{8}{10}$ lb(s) (appl. ($\frac{1}{2}$ (10 A. (tot.runoff) efficiency) runoff) d.basin)

B. Drift

$$\frac{1.5 \text{ lb(s)} \times 0.05}{(5 \text{ % drift)}} = \frac{.075 \text{ lb(s)}}{(5 \text{ % drift)}}$$

Tot. loading =
$$\frac{18}{\text{(tot. runoff)}}$$
 lb(s) + $\frac{.075}{\text{(tot. drift)}}$ lb(s) = $\frac{.355}{\text{lb(s)}}$

Therefore, EEC = 61 ppb x
$$\frac{.255}{(1bs)} = \frac{15.6}{187}$$
 ppb $\frac{.255}{.255} = \frac{.255}{.255} = \frac{.255}{.255}$

DAILY ACCUMULATED PESTICIDE RESIDUES---MULTP. APPL.

	Chemical name		- -		CHLORO	THANI	ւ	
	Initial concer Half-life A number of ap Application in Length of simu	pplication			360 30 8 14 100	Sho	+5	دی
			,					
	DAY	RESIDUE	(PPM)					
	.0	360						
	1	351.777	76					
	2	343.743						
٠.	3	335.891						
	4	328.220	1					
	3 4 5 6 7	320.723	6					
	6	313.398	32					
	7	306.240			•			
	8	299.245						•
	9	292.410						
	10	285.732						
	11	279.206						
	12	272.829						
	13	266.597						
	14	620.508						
	15	606.336						
	16	592.487						
	17	578.954						
	18	565.731						
	19	552.810						
	20	540.184						
	21	527.846 515.790						
	22 23	504.009						
	23 24	492.497						
	25	481.249						
	26	470.257						
	27	459.516						
	28	809.021						
	29	790.543						
	30	772.487						
	31	754.843						
	32	737.603			•			
	33	720.756						
	34	704.294						
	22	600 000	•					

35

36

37 38

39

40 41

42

43

688.208

672.4893 657.1295

642.1207

627.4546 613.1236

599.1198 945.4359

923.8421

```
44
                 902.7415
 45
                 882.1228
 46
                 861.9751
                 842.2876
 47
 48
                 823.0497
 49
                 804.2513
 50
                 785.8821
                 767.9325
 51
 52
                 750.393
 53
                 733.254
                 716.5065
 54
                 700.1414
 55
 56
                 1044.15
 57
                 1020.302
 58
                 996.998
 59
                 974.2264
 60
                 951.9751
                 930.2321
 61
 62
                 908.9854
                 888.2242
 63
 64
                 867.9371
 65
                 848.1134
                 828.7425
 66
 67
                 809.814
 68
                 791.3178
 69
                 773.2441
 70
                 1115.583
 71
                 1090.103
 72
                 1065.205
 73
                 1040.876
 74
                 1017.102
 75
                 993.8716
                 971.1715
 76
 77
                 948.99
 78
                 927.3149
 79
                 906.1351
 80
                 885.4389
 81
                 865.2154
 82
                 845.4539
 83
                 826.1438
 84
                 1167.275
 85
                 1140.614
 86
                 1114.562
                 1089.106
 87
 88
                 1064.231
 89
                 1039.923
                 1016.172 *
 90
                 992.9622
 91
                 970.2828
 92
 93
                 948.1215
 94
                 926.4664
 95
                 905.3059
                 884.6287
 96
 97
                 864.4238
 98 ~
                 1204.68
 99
                 1177.165
 100
                 1150.279
Maximum residue
Average residue
```

1204.68 761.2103

DAILY ACCUMULATED PESTICIDE RESIDUES --- MULTP. APPL.

Chemical name	CHLOROTHANIL
Initial concentration (ppm)	165
Half-life	165 15 8 5
A number of application	8
Application interval	14
Length of simulation (day)	100

Length	of	simulation	(day)
DAY		RESIDUE	(PPM)
0 1 2 3 4 5 6 7 8 9 10 11 12 13		165 161.231 157.548 153.950 150.434 146.998 143.640 140.360 137.154 134.021 130.960 127.969 125.046	4 9 4 2 3 8 1 3 6 6 5
14 15 16 17 18 19 20 21 22 23 24 25 26		284.399 277.904 271.556 265.354 259.293 253.371 247.584 241.929 236.403 231.004 225.728 220.572	7 3 6 4 3 5 8 3 2 6 7
27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44		210.611 370.801 362.332 354.056 345.97 338.068 330.346 322.801 315.428 308.224 301.184 294.305 287.583 281.015 274.596 433.324 423.427 413.756	5 3 7 6 4 7 3 4 6 8 6

```
45"
                 404.3063
 46
                 395.0719
 47
                 386.0485
                 377.2312
 48
 49
                 368.6152
 50
                 360.196
                 351.9691
 51
 52
                 343.9301
 53
                 336.0748
                 328.3988
 54
 55
                 320.8981
 56
                 478.5688
 57
                 467.6383
 58
                 456.9574
 59
                 446.5205
 60
                 436.322
 61
                 426.3563
 62
                 416.6183
 63
                 407.1028
                 397.8045
 64
 65
                 388.7186
 66
                 379.8403
 67
                 371.1647
                 362.6873
 68
 69
                 354.4035
 70
                 511.309
 71
                 499.6306
 72
                 488.219
 73
                 477.0681
 74
                 466.1719
 75
                 455.5245
 76
                 445.1203
 77
                 434.9538
 78
                 425.0194
 79
                 415.3119
 80
                 405.8262
 81
                 396.5571
 82
                 387.4997
                 378.6492
 83
                 535.0009
 84
 85
                 522.7815
 86
                 510.8411
 87
                 499.1735
 88
                 487.7723
 89
                 476.6316
 90
                 465.7453
                 455.1077
 91
 92
                 444.713
 93
                 434.5557
 94
                 424.6305
 95
                 414.9319
 96
                 405.4548
 97
                 396.1942
 98
                 552.1451
 99
                 539.5341
 100
                 527.2111
                                                 552.1451
Maximum residue
Average residue
                                                 348.8882
```

Chemical name	CHLOROTHANIL
Initial concentration (ppm)	30 Deg Date - Smort grass
Half-life	30
A number of application	8
Application interval	14
Length of simulation (day)	100

Length	of	simulation	(day)
DAY	•	RESIDUE	(PPM)
 01234567891112145171890122222223333333333444234444444444444444		27 26.3833 25.7807 25.1918 24.6165 24.0542 23.5048 22.4434 21.9308 21.4299 20.4621 19.9948 46.5381 45.4752 44.4365 43.4216 42.4298 41.4607 40.5138 39.5884 37.8007 36.9373 37.9365 57.936 57.9365 57.9365 57.9365 57.936 57.936 57.936 57.936 57.9	291761211672315276 66149161558215 925 79 6
45		66.1592	